Appendix

Market Responses to Global Governance: International Climate Cooperation and Europe's Carbon Trading

Impact of Emissions Regulations on Firm Profits as Emissions Allowances Vary

To clarify how global multilateral decisions related to the supply of international carbon credits can affect the profit of private firms regulated by cap-and-trade in Europe, consider European firm *i* producing in the EU market. The market is represented by the demand curve, $P(q_i + q_{\neq i})$, where $q_{\neq i}$ represents total production by other firms. The total cost of production is C_i . Each regulated firm is subject to a trading scheme of greenhouse gas emissions, which is a function of its emissions rate, r_i , its total production, q_i , and level of abatement, I_i (Bushnell et al 2013).

Under cap-and-trade the level of abatement determines an emission rate $r_i(q_i, I_i)$, and an abatement cost, $k(I_i)$. Now assume that the per-unit price of emissions allowances is τ , a direct compliance costs. If the firm possesses allowances A_i equal to its initial allocation less net sales, considering both input and environmental costs the profits of firm i can be represented as π .

$$\pi_i = \mathbf{P}(\mathbf{q}_i + \mathbf{q}_{\neq i}) \mathbf{q}_i - \mathbf{C}_i (\mathbf{q}_i) + \tau \mathbf{A}_i - \tau \mathbf{r}_i (\mathbf{q}_i, \mathbf{I}_i) \mathbf{q}_i - \mathbf{k} (\mathbf{I}_i).$$

An exogenous shock to permit prices that does not hurt production costs but, de facto, strengthens options for zero-cost abatement should increase the profits of firm i, because the derivative for profits $(\delta \pi_i / \delta \tau)$ are always **positive** with positive quantities of allowances A_i . Thus, an event that provides a firm with always-cheaper options for status-quo production should boost the firm stock value, ceteris paribus.

Table A.1: Sampled EU ETS companies

ATKINS EADS ASTRAZENECA ERAMET BAE SYSTEMS EIFFAGE BRITISH AMERICAN TOBACCO AKZO NOBEL BG GROUP ENEL BHP BILLITON ENI BP FORTUM CENTRICA CIMPOR EDP ENERGIAS DE PORTUGAL CRH BMW KONINKLIJKE DSM CONTINENTAL ABB CLARIANT CIBA N E ON SHELL FRESENIUS ATEL HOLDING DIAGEO BOLIDEN DANISCO MOLLER - MAERSK ACERINOX AIR LIQUIDE AIR LIQUIDE ALSTOM ALSTOM DANONE

This table lists the 38 selected EU ETS firms analyzed in this paper.

Table A.2: Coding of the UNFCCC Outcome Variable: Emission Trading Scheme Debates at the UNFCCC and Excerpts from the Earth Negotiations Bulletin

Date	Decision Excerpt	Outcome (Code)
28 November 2005	COP 11's agenda included items on capacity building and technology	Agreement on support
	transfer, the adverse effects of climate change on developing and least	for capacity building for
	developed countries, and several financial and budget related issues,	emission trading credits
	including the report of the Global Environment Facility [its impacts	(Good Outcome = 1)
	on capacity building]. [] Parties took decisions on technology trans-	
	fer, LULUCF, the UNFCCC's financial mechanisms, and education,	
	training and public awareness.	
30 November 2005	On implications of the establishment of new facilities to ob-	Agreement on sustain-
	tain credits under the CDM for the destruction of HFC-23	ing credit provision
	(FCCC/SBS1A/2005/INF.8 and /MISC.10 and /MISC.11), Parties	(Cool Outparts 1)
	stressed the need to [proceed with mancial mechanisms and] avoid	(Good Outcome = 1)
1 December 2005	The delegates noted the linking of the FU emissions trading scheme	Agreement on sustain
1 December 2005	to the Kyoto mechanisms, and concerns that the CDM process needs	ing credit provision
	to be improved to deliver projects and CERs on the scale sought by	via CDM integration
	Parties.	(Good Outcome = 1)
6 December 2005	The Co-Chairs introduced a draft decision, noting that while the	Agreement on sustain-
	decision would apply, mutatis mutandis, the MOU with respect to	ing credit provision
	guidance to the entity entrusted with the operation of the financial	via CDM integration
	mechanism of the Convention, it would not apply to the Adaptation	(Good Outcome = 1)
	Fund, as no decision has been taken on the operational entity for	
	that fund.ă[] Highlighting the need to assist vulnerable countries,	
	developing countries suggested levying 2% of JI Emissions Reduction	
	Units (ERUs) for the Adaptation Fund.	
14 November 2006	The contact group convened briefly in the evening to introduce the	Agreement on support
	Co-Chairs' draft conclusions on the GEF's report to the COP; a draft	for capacity building for
	decision on the review of the financial mechanism; and a draft decision	emission trading credits
	on additional guidance to the GEF.	(Good Outcome = 1)
15 November 2006	Tina Guthrie (Canada) reported on the outcomes of the contact	Agreement on sustain-
	group where delegates resolved the outstanding issue on the fourth	ing credit provision
	review of the financial mechanism. [] with agreement on the major-	(Good Outcome = 1)
	slimpsed the first stops in the confidence building process that will	
	be required to pull together a post 2012 regime	
17 November 2006	[The group] welcomes the fact that Belarus will use any revenue gen-	Agreement on sustain-
(from ENB summary	erated under emissions trading for further greenhouse gas abatement	ing credit provision
of 20 November	measures, subject to approval by the relevant authorities in the coun-	(Good Outcome = 1)
2008)	try. [] The EU emissions trading scheme is likely to form the	
/	cornerstone of a global scheme. [] Parties agreed on the need to	
	continue deliberating on this option, but disagreements surfaced on	
	the institutions to which the CERs would be issued, and on what	
	to do with the 'remaining' credits left after the project costs were	
	met. [] China supported issuing the credits to the host govern-	
	ment account rather than to another institution and that the credits	
	be used to fund other activities beneficial to the global environment.	
	[] Brazil, the EU and others supported issuing the credits to an-	
	other institution and either canceling the credits or using them to	
	fund activities that include means to phase out the production and	
	consumption of HCFCs.	

continues

Date	Decision Excerpt	Outcome (Code)
8 December 2007	Delegates discussed issues such as costs, the inclusion of non-CO2 gases in the EU Emissions Trading Scheme (ETS), and the agriculture	Partial agreement on capacity building; dis-
	sector. [] Senegal, Argentina and others opposed crediting the destruction of HFC-23 in new facilities under the CDM.	agreement on sectoral divisions of credits $(Good Outcome = 0)$
15 December 2007	While parties agreed to request submissions on extending the share	Partial agreement on
(from ENB summary	of proceeds to JI and emissions trading. Ukraine and the Bussian	capacity building: dis-
of 18 December	Federation expressed reservations at the closing plenary, stating that	agreement on sectoral
2007)	this proposal would hinder the implementation of these mechanisms	divisions of credits
,	in their countries	(Good Outcome = 0)
2-3 December 2008	The Least Developed Countries (LDCs) supported enhancing the fi-	Agreement on support
	nancial mechanism under the COP, and highlighted the importance	for capacity building for
	of national adaptation programmes of action (NAPAs).	emission trading credits
		(Good Outcome $= 1$)
4 December 2008	In the contact group, delegates discussed the heavily bracketed text	Agreement on sustaining
	for a draft decision on the fourth review compiled at SBI 28. China	credit provision via au-
	and South Africa supported simplifying accreditation of Designated	ditors (Good
	Operational Entities (DOEs) and China and others called for more	Outcome = 1)
	transparency. The EU warned that reduction goals could be weak-	
	ened depending on the rules adopted for LULUCF, carbon credits and bunker fuels.	
10 December 2008	Delegates met on Tuesday afternoon to consider a new draft text,	Disagreement on
	which contains, inter alia: three different options on extending the	credit provision
	share of proceeds to JI and emissions trading. [] The mood seemed	(Good Outcome $= -1$)
	less upbeat, with some frustration expressed after talks bogged down	
	on the financial mechanism, Adaptation Fund and LDC Fund. []	
	Informal consultations focusing on the operational aspects and dis-	
	tribution of CDM projects continued on Tuesday, based on a new	
	draft text addressing, inter alia, transparency of the CDM Executive	
	Board's decision making, accreditation of DOEs and application of	
12 December 2008	Innancial penalties to non-complying DOEs.	Diagamagnant
(from ENB summary	[1 here was] lack of agreement on extending the share of proceeds (or "adaptation law") to Joint Implementation and emissions trading	credit provision
of 15 December	under the second review of the Protocol under Article 0 [] Devel	(Cood Outcome = 1)
2008)	oped countries generally expressed their satisfaction with the CEF's	
2000)	performance while developing countries had numerous concerns par-	
	ticularly with regard to the GEF's fifth replenishment, complemen-	
	tarity of the financial mechanism to other sources of financing, pro-	
	liferation of funds outside of the Convention and outcomes of the	
	mid-term review of the Resource Allocation Framework (RAF).	

continues

Date	Decision Excerpt	Outcome (Code)
10-12 December 2009	On the fourth review of the financial mechanism, the EU proposed streamlining the draft conclusions. [The EU representative] high- lighted actions taken to operationalize the Adaptation Fund, includ- ing: adoption of policies and guidelines for accessing funds; com- mencement of the monetization of Certified Emission Reductions (CERs); and the decision to accept Germany's offer to confer le- gal capacity on and host the Board. [] Some parties preferred to house a matching function or registry within a financial mechanism, while others said that matching functions should remain within the purview of the drafting group [] Co-Chair Lei noted progress made under this agenda item but said that the contact group needs more time to finish its work.	Partial agreement on capacity building and issuing of credits (Good Outcome = 0)
15 December 2009	On emissions trading, New Zealand noted interest in extending emis- sions trading to developing countries and proposed text reflecting this. The EU, supported by NEW ZEALAND and others, proposed a paragraph establishing new market-based mechanisms. This was opposed by ARGENTINA and VENEZUELA. [] Venezuela op- posed the establishment of new market-based-mechanisms and pro- posed inserting a footnote stating that this would require a Protocol amendment, and also noted that this issue is being addressed under the AWG-LCA.	Disagreement on credit provision and market integration (Good Outcome = -1)
18 December 2009	The COP adopted a decision on the fourth review of the fi- nancial mechanism referred to it by the SBI. In its decision (FCCC/SBI/2009/L.29), the COP requests the SBI to continue its consideration of the fourth review of the financial mechanism at SBI 32, with a view to recommending a draft decision for adoption by COP 16. The COP also decides to complete the consideration of the fourth review of the financial mechanism at COP 16.	Disagreement on credit provision and market integration; agreement on continuing dis- cussion at next COP (Good Outcome = -1)
3-4 December 2010 8-10 December 2010 (also from ENB sum- mary of 15 December 2008)	[] Parties discussed whether progress could be made on various is- sues including: nuclear power under the CDM; use of standardized baselines; co-benefits; use of Certified Emission Reductions (CERs) from project activities in certain host countries; discount factors; share of proceeds; emissions trading; and supplementarity. [] Par- ties then discussed whether credits can be issued from projects in countries such as Belarus that are in the process of becoming Proto- col Annex B parties. [] AWG-KP Vice-Chair Macey said the group had refined options on the possible inclusion of carbon capture and storage (CCS) under the CDM and that parties are consulting on the use of Certified Emission Reductions (CERs) generated from projects in certain countries.ă On the flexibility mechanisms, AWG-KP Vice-Chair Adrian Macey (New Zealand) highlighted the focus of discussions on enhancing co- benefits under the CDM and increasing the use of Certified Emission Reductions from certain host countries. [] Parties discussed a para- graph allowing crediting from JI projects after the first commit- ment period. Parties [engaged] in extensive debate over text dealing with [] the process and requirements for the accreditation of na- tional implementing entities. [] Going through the text, parties agreed on all paragraphs apart from par. 52 on the Executive Board revising the procedures for CDM project registration to allow the crediting period to start from the date that a complete request for registration has been submitted, which was bracketed at the request of Bolivia.	Partial agreement on capacity building and issuing of credits (Good Outcome = 0) 0) 0 0 Partial agreement 0 0 on capacity building and issuing of credits (Good Outcome = 0) 0 0 0 0 0 0

	AAR_{it}	Models	AR _{it} N	Iodels
	(1)	(2)	(3)	(4)
Good UNFCCC Outcome	0.070***	0.068^{***}	0.088^{+}	0.17^{*}
	(0.019)	(0.020)	(0.050)	(0.082)
National Elections		0.076***		-0.14*
		(0.022)		(0.061)
Domestic Policy		0.077^{+}		0.37^{+}
Domestic 1 oney		(0.011)		(0.22)
		(0.044)		(0.22)
Relevant Web Searches δ		0.003***		0.027^{+}
		(0.008)		(0.014)
		()		
Relevant Web $Searches_{t-1}$		0.005^{***}		0.016^{**}
		(0.001)		(0.005)
~ ~ ~ ~				
Carbon Price δ		0.024^{**}		0.057
		(0.0078)		(0.043)
Conton Dais		0.096**		0.11*
Carbon $Price_{t-1}$		(0.020°)		(0.11)
		(0.0090)		(0.048)
Constant	-0.060***	-0 78***	-0 077***	-2 68**
	(0.004)	(0.23)	(0.0070)	(1.03)
N	1582	1094	1360	983
Firms	38	38	38	38
Fixed effects	ves	ves	ves	ves
\mathbb{R}^2	0.016	0.004	0.002	0.004

Table A.3: The impact of UNFCCC decisions on the returns of EU ETS firms, 2005-07

Linear coefficients. Robust standard errors in parentheses. The outcome variable for Models 1 and 2 is AAR_{it} , while the outcome variable for Models 3 and 4 is AR_{it} . Firm, country and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

				AAR _{it} Mod	lels		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	$Cop \ end \ -3$	$Cop \ end \ -2$	Cop end -1	$Cop \ end$	Cop end +1	Cop end $+2$	Cop end $+3$
Good UNFCCC Outcome	0.013	0.041**	0.054^{**}	0.062**	0.069^{**}	0.072^{**}	0.051^{**}
	(0.012)	(0.015)	(0.019)	(0.020)	(0.022)	(0.022)	(0.020)
National Elections	0.00	0.00	0.00	-0.001	0.013^{+}	0.016^{*}	0.076^{**}
	(0.00)	(0.00)	(0.00)	(0.004)	(0.007)	(0.006)	(0.022)
Domestic Policy	0.048	0.073	0.090	0.094	0.10^{+}	0.11^{+}	0.075^{+}
	(0.053)	(0.055)	(0.058)	(0.059)	(0.060)	(0.060)	(0.044)
Relevant Web Searches δ	0.000	0.001	0.002^{+}	0.002^{*}	0.003^{*}	0.003**	0.003**
	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)
Relevant Web $Searches_{t-1}$	0.004^{*}	0.005**	0.005**	0.005**	0.005^{**}	0.006**	0.005**
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.001)
Carbon Price δ	0.001	0.013	0.019^{+}	0.020^{*}	0.024^{*}	0.027**	0.024**
	(0.008)	(0.008)	(0.009)	(0.009)	(0.010)	(0.009)	(0.008)
Carbon $Price_{t-1}$	0.028^{*}	0.029^{*}	0.029*	0.029**	0.030**	0.031**	0.026**
	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.011)	(0.0089)
Constant	-0.72**	-0.79**	-0.83**	-0.84**	-0.87**	-0.91**	-0.77**
	(0.25)	(0.26)	(0.27)	(0.27)	(0.28)	(0.28)	(0.22)
N	566	679	792	867	980	1018	1094
Firms	38	38	38	38	38	38	38
Fixed effects	yes	yes	yes	yes	yes	yes	yes
\mathbb{R}^2	0.18	0.16	0.16	0.16	0.16	0.16	0.16

Table A.4: The impact of UNFCCC decisions on the returns of EU ETS firms: Alternative Event Windows, 2005-07

Linear coefficients. Robust standard errors in parentheses. The outcome variable is AAR_{it}. The estimations are based on the time series truncated, respectively, at 3 days before the end of the COP meeting; 2 days before the end of the COP meeting; 1 day before the end of the COP meeting; the ending day of the COP meeting; 1 day after the end of the COP meeting; 2 days after the end of the COP meeting; and 3 days after the end of the COP meeting. Firm, country and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

Figure A.1: The Impact of UNFCCC Decisions About Abatement Credits ('Good Outcomes') on EU ETS returns: Time Span of the Effect

The figure illustrates the effect of *Good UNFCCC Outcome* as estimated in several fully specified linear models where the estimation window is truncated at the noted date of the COP. The outcome variable is the firms' Average Abnormal Returns. Each dot corresponds to the estimated coefficient, while the grey and coloured lines correspond to the 95% and 90% confidence intervals, respectively. See Appendix for the regression tables with the complete set of estimated parameters.

		AAR_{it} Models	
	(1)	(2)	(3)
	Mining	Manufacture	Power
Good UNFCCC Outcome	0.11^{+}	0.11^{***}	0.054^{*}
	(0.061)	(0.024)	(0.022)
National Elections	0.061	0.060^{*}	0.032
	(0.076)	(0.030)	(0.027)
Domestic Policy	0.15	0.060^{+}	-0.075*
Domestic 1 oneg	(0.093)	(0.033)	(0.031)
	(0.000)	(0.000)	(0.001)
Relevant Web Searches δ	0.001	0.001	0.001
	(0.005)	(0.002)	(0.002)
	· · · ·		. ,
Relevant Web $Searches_{t-1}$	0.005^{*}	0.005^{***}	0.003^{***}
	(0.002)	(0.001)	(0.001)
Cambon Price S	0.024	0.019	0.006
Carbon Frice o	(0.034)	(0.013)	-0.000
	(0.028)	(0.011)	(0.010)
Carbon $Price_{t-1}$	0.044***	0.022***	-0.005^{+}
	(0.009)	(0.003)	(0.003)
	· · · ·		· · · ·
Constant	-1.19^{***}	-0.72^{***}	-0.070
	(0.19)	(0.070)	(0.066)
N	203	377	398
Firms	7	13	14
Fixed effects	yes	yes	yes
\mathbb{R}^2	0.18	0.28	0.098

Table A.5: The impact of UNFCCC decisions on the returns of EU ETS firms: Average Abnormal Returns by Sector, 2005-07

Linear coefficients. Robust standard errors in parentheses. The outcome variable is AAR_{it} . Firm and country fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

Figure A.2: The Impact of UNFCCC Decisions About Abatement Credits ('Good Outcomes') on EU ETS returns: Subgroup Results by Sector

The figure illustrates the effect of *Good UNFCCC Outcome* as estimated in three fully specified linear fixed effects models based on three sector-based subsamples. These subsamples include power companies, manufacture companies, and mining companies, respectively. The outcome variable is the firms' Average Abnormal Returns. Each dot corresponds to the estimated coefficient, while the grey and coloured lines correspond to the 95% and 90% confidence intervals, respectively.

	AA	R _{it}	Al	R_{it}	AAR_{it}		AR _{it}	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Good UNFCCC Outcome	0.050	-0.001	-0.45	-0.62				
	(0.043)	(0.016)	(0.36)	(0.56)				
Cood Outcome: Ringry					0.68	0.11	0.16	0.42+
Good Outcome. Dinary					(0.51)	(0.11)	(0.10)	(0.24)
					(0.51)	(0.11)	(0.17)	(0.24)
National Elections		0.24		-0.81		0.24		-0.82
		(0.22)		(0.54)		(0.22)		(0.56)
Domestic Policy		0.67		-2.11		0.67		-2.05
		(0.54)		(1.95)		(0.54)		(1.89)
Relevant Web Searches		-0.004		0.028		-0.004		0.023
f(t) =		(0.004)		(0.020)		(0.004)		(0.020)
		(0.000)		(0.025)		(0.000)		(0.010)
Carbon Price δ		0.015		-0.76		0.020		-0.66
		(0.021)		(1.16)		(0.023)		(1.07)
Carbon $Price_{t-1}$		-0.10		-0.24		-0.10		-0.24
		(0.092)		(0.23)		(0.092)		(0.23)
Constant	-0 12***	1 75	-0 16***	2 56	-0.15***	1 76	-0 13***	2.78
Constant	(0.02)	(1.73)	(0.10)	(2.92)	(0.10)	(1.73)	(0.10)	(3.13)
N	3626	2849	3626	2849	3626	2849	3626	$\frac{(0.10)}{2849}$
Firms	38	38	38	38	38	38	38	38
Fixed effects	yes	yes	yes	yes	yes	yes	yes	yes
\mathbb{R}^2	0.001	0.023	0.001	0.001	0.001	0.023	0.001	0.001

Table A.6: The impact of UNFCCC decisions on the returns of EU ETS firms: Phase II, 2008-10

Linear coefficients. The outcome variable for Models 1-2 and 5-6 is AAR_{it} , while the outcome variable for Models 3-4 and 7-8 is AR_{it} . Firm, country and COP fixed effects estimated but not reported, while *Relevant Web Searches* δ is omitted because of collinearity. + p < .1, * p < .05, ** p < .01, *** p < .001.

	2008	5-07	2008-2010	
	(1)	(2)	(3)	(4)
	AAR_{it}	AR_{it}	AAR_{it}	AR_{it}
Good UNFCCC Outcome	0.10***	0.26^{*}	0.006	-0.91
	(0.025)	(0.11)	(0.024)	(0.80)
National Elections	0.12^{***}	-0.11	0.36	-0.92
	(0.028)	(0.081)	(0.31)	(0.78)
Domestic Policy	0.13^{**}	0.70^{+}	0.95	-3.10
	(0.041)	(0.37)	(0.76)	(2.77)
Relevant Web Searches δ	0.005***	0.038^{+}	0.000	0.000
	(0.001)	(0.020)	(0.000)	(0.000)
Relevant Web $Searches_{t-1}$	0.007***	0.024**	-0.001	- 0.041
	(0.002)	(0.008)	(0.007)	(0.033)
Carbon Price δ	0.035**	0.099	0.032	-1.11
	(0.010)	(0.063)	(0.030)	(1.66)
Carbon $Price_{t-1}$	0.039**	0.18^{*}	-0.15	-0.35
	(0.011)	(0.077)	(0.13)	(0.33)
Constant	-1.14***	-4.22*	2.55	3.64
	(0.28)	(1.64)	(2.46)	(4.17)
N	783	702	2002	2002
Firms	27	27	26	26
Fixed effects	yes	yes	yes	yes
\mathbb{R}^2	0.21	0.043	0.033	0.002

Table A.7: The impact of UNFCCC decisions on the returns of EU ETS firms, 2005-07: Excluding UK Companies

Linear coefficients. Robust standard errors in parentheses. Firm and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

	200.	5-07	2008-	-2010
	(1)	(2)	(3)	(4)
	AAR_{it}	AR_{it}	AAR_{it}	AR_{it}
Good UNFCCC Outcome	0.068^{*}	0.17	-0.001	-0.62
	(0.019)	(0.10)	(0.016)	(0.59)
National Elections	0.076^{+}	-0.14*	0.24	-0.81
	(0.018)	(0.055)	(0.22)	(0.59)
Domestic Policy	0.075	0.37	0.67	-2.11
	(0.066)	(0.28)	(0.57)	(2.04)
Relevant Web Searches δ	0.003^{*}	0.027	0.000	0.000
	(0.001)	(0.017)	(0.000)	(0.000)
Relevant Web $Searches_{t-1}$	0.005^{*}	0.016^{+}	-0.004	0.028
	(0.001)	(0.006)	(0.005)	(0.024)
Carbon Price δ	0.024^{+}	0.056	0.015	-0.76
	(0.011)	(0.032)	(0.024)	(1.24)
Carbon $Price_{t-1}$	0.026	0.11	-0.10	-0.24
	(0.013)	(0.060)	(0.096)	(0.24)
Constant	-0.77^{+}	-2.61	1.75	2.56
	(0.29)	(1.26)	(1.79)	(3.04)
N	1094	983	2849	2849
Firms	38	38	37	37
Fixed effects	yes	yes	yes	yes
\mathbb{R}^2	0.16	0.031	0.034	0.001

Table A.8: The impact of UNFCCC decisions on the returns of EU ETS firms, 2005-07: Country Clustered Standard Errors

Linear coefficients. Country clustered standard errors in parentheses. Firm and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

	2005	5-07	2008-	-2010
	(1)	(2)	(3)	(4)
	AAR_{it}	AR_{it}	AAR_{it}	AR_{it}
Good UNFCCC Outcome	0.068^{*}	0.17	-0.001	-0.62
	(0.019)	(0.10)	(0.014)	(0.51)
National Elections	0.076^{*}	-0.14^+	0.24	-0.81
	(0.018)	(0.055)	(0.19)	(0.60)
Domestic Policy	0.075	0.37	0.67	-2.11
	(0.066)	(0.28)	(0.48)	(1.89)
Relevant Web Searches δ	0.003^{*}	0.027	0.000	0.000
	(0.001)	(0.017)	(0.000)	(0.000)
Relevant Web $Searches_{t-1}$	0.005***	0.016^{+}	-0.004	0.028
	(0.001)	(0.006)	(0.005)	(0.020)
Carbon Price δ	0.024^{+}	0.056	0.015	-0.76
	(0.011)	(0.032)	(0.020)	(1.15)
Carbon $Price_{t-1}$	0.026	0.11	-0.10	-0.24
	(0.013)	(0.060)	(0.081)	(0.21)
Constant	-0.77^{+}	-2.61	1.75	2.56
	(0.29)	(1.26)	(1.53)	(2.72)
N	1094	983	2849	2849
Firms	38	38	37	37
Fixed effects	yes	yes	yes	yes
\mathbb{R}^2	0.16	0.031	0.023	0.001

Table A.9: The impact of UNFCCC decisions on the returns of EU ETS firms: Sector Clustered Standard Errors

Linear coefficients. Standard errors clustered on sector in parentheses. Firm, country and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

	Montre	al COP	Nairob	oi COP
	(1)	(2)	(3)	(4)
Good UNFCCC Outcome	0.14^{**}	0.10**	0.093**	0.038**
	(0.040)	(0.030)	(0.027)	(0.011)
National Elections		0.052^{**}		0.11^{**}
		(0.016)		(0.032)
Domestic Policy		0.29^{***}		-0.11**
v		(0.069)		(0.031)
Relevant Web Searches S		-0 009***		0 002**
necedani web Dearenes o		(0.005)		(0,0002)
		(0.0025)		(0.000)
Relevant Web $Searches_{t-1}$		-0.017^{***}		0.003**
		(0.004)		(0.000)
Carbon Price δ		0.049***		-0.016**
		(0.013)		(0,004)
		(0.010)		(0.001)
Carbon $Price_{t-1}$		0.056^{***}		-0.020**
		(0.014)		(0.005)
		~ /		× /
Constant	-0.074^{***}	-0.59^{***}	-0.11^{***}	0.073
	(0.0042)	(0.13)	(0.0050)	(0.053)
N	1050	676	1026	760
Firms	38	38	38	38
Fixed effects	yes	yes	yes	yes
\mathbb{R}^2	0.030	0.24	0.052	0.24

Table A.10: The impact of UNFCCC decisions on the returns of EU ETS firms: Montreal (2005) and Nairobi (2006) COPs

Linear coefficients. The outcome for Models 1 and 2 is the AAR calculated for the Montreal COP days, while the outcome for Models 3 and 4 is the AAR the Nairobi COP days. Firm, country and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

Table A.11: Sampled non-EU ETS companies

SAUDI BASIC Ind. (SAU) FEMSA (MEX) FORD MOTOR (USA) DENSO (JAP) MEDTRONIC (USA) INVENTEC (TWN) FLUOR (USA) PHILIP MORRIS INTERNATIONAL (USA) CHINA NATIONAL BUILDING (CHN) PFIZER (USA) PPG INDUSTRIES (USA) SUMITOMO CHEMICAL (JAP) BOEING (USA) ELI LILLY & Co (USA) CHINA SHENHUA ENERGY (CHN) CHEVRON (USA) PRETROCHINA (CHN) ROSNEFT (RUS) FANUS (JAP) MANILA ELECTRIC (PHL) HONEYWELL INTERNATIONAL (USA) DUKE ENERGY (USA) NIPPON YUSEN (JAP) KOREA ELECTRIC POWER (SKR) MONSANTO (USA) SWIRE PACIFIC (CHN) SEMPRA ENERGY (USA) DUKE ENERGY (USA) CHINA YANGTZE POWER (CHN) FEDERAL GRID of UES (RUS) DUKE ENERGY (USA) AMERICAN ELECTRIC (USA) SURGUTNEFTEGAS (RUS) BOMBARDIER (CAN)

DOW CHEMICALS (USA) MONDELEZ INTERNATIONAL (USA) ARCHER DANIELS MIDLAND (USA) PEPSI Co. (USA) GENERAL MOTORS (USA) HYUNDAI MOBIS (SKR) BAXTER INTERNATIONAL (USA) NCR (USA) SINOHYDRO GROUP (CHN) JAPAN TOBACCO (JAP) CEMEX (MEX) MERCK & Co (USA) SHIN-ETSU CHEMICAL (JAP) CELANESE (USA) LACKHEED MARTIN (USA) ABBOTT LABS (USA) FREEPORT-MCMORRAN COPPER (USA) GAZPROM (RUS) EXXON MOBIL (USA) PETROBRAS (BRA) ROCKWELL AUTOMATION (USA) FORTIS (CAN) 3M (USA) BGE (USA) SHANGHAI INTERNATIONAL PORT (CHN) PUBLIC SERVICE ENTERPRISE (USA) PRAXAIR (USA) KEPPEL CORP (SGP) TOKYO GAS (JAP) EXELON (USA) **ORIGIN ENERGY (AUS)** ATCO (CAN) HUANENG POWER INTERNATIONAL (CHN) PTT PCL (THA) PECO ENERGY (USA) L-3 COMMUNICATIONS (USA)

The table lists the non-European firms that have matching market characteristics to the 38 EU according to the 2010 Forbes Global 2000 dataset. See main text for more details.

Figure A.3: Non-EU Firms' Average Returns and Prices, 2005-2007

The top plot shows the average stock return of the 58 selected non-EU ETS (non-European) firms. The bottom plots show the return and price series for a selection of these firms.

	AAR _{it}	Models	AR_{it}	Models
	(1)	(2)	(3)	(4)
Good UNFCCC Outcome	-0.037*	-0.034**	0.031	0.038
	(0.014)	(0.011)	(0.040)	(0.039)
National Elections		-0.068**		0.062^{+}
		(0.021)		(0.033)
Relevant Web Searches δ		-0.001*		0.007
		(0.001)		(0.005)
Relevant Web $Searches_{t-1}$		-0.001		-0.001
		(0.001)		(0.002)
Carbon Price δ		-0.006		-0.001
		(0.005)		(0.033)
Carbon $Price_{t-1}$		-0.009*		-0.048**
		(0.004)		(0.018)
Constant	0.014***	-0.028	0.013^{*}	0.37
	(0.0026)	(0.080)	(0.0056)	(0.41)
N	2394	1656	2058	1488
Firms	58	58	58	58
Fixed effects	yes	yes	yes	yes
\mathbb{R}^2	0.008	0.004	0.001	0.004

Linear coefficients. Robust standard errors in parentheses. The outcome variable for Models 1 and 2 is AAR_{it} , while the outcome variable for Models 3 and 4 is AR_{it} . Firm, country and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

	AAR _{it}	AAR _{it} Models		AR _{it} Models	
	(1)	(2)	(3)	(4)	
Good UNFCCC Outcome	-0.050**	-0.043***	0.059	0.045	
	(0.010)	(0.006)	(0.054)	(0.054)	
National Elections		-0.057*		0.047^{+}	
		(0.031)		(0.024)	
Relevant Web Searches δ		-0.002***		0.003^{*}	
		(0.001)		(0.002)	
Relevant Web $Searches_{t-1}$		-0.002***		0.001	
		(0.000)		(0.001)	
Carbon Price δ		-0.007		0.009**	
		(0.006)		(0.036)	
Carbon $Price_{t-1}$		-0.011*		0.002^{*}	
		(0.006)		(0.001)	
Constant	0.019***	0.33**	-0.010***	0.00	
	(0.002)	(0.10)	(0.001)	(0.00)	
N	1862	1287	14028	10579	
Firms	45	45	45	45	
Fixed effects	yes	yes	yes	yes	

Table A.13: The Impact of UNFCCC decisions on non-EU firms' returns, 2005-07 – Only Annex I countries

Linear coefficients. Robust standard errors in parentheses. The outcome variable for Models 1 and 2 is AAR_{it} , while the outcome variable for Models 3 and 4 is AR_{it} . Firm, country and COP fixed effects estimated but not reported. + p < .1, * p < .05, ** p < .01, *** p < .001.

	(1)	(2)	(S3)	
	Y: CDM/JI projects will eliminate need	Y: CDM/JI is the most cost-efficient		
	for internal abatement in $EU ETS$	way to redu	to reduce emissions	
	(Survey year: 2007)	(Survey year: 2007)	(Survey year: 2013)	
FIL ETS regulated	0.77	0 53**	1 00*	
DO DIS regulated	(0.90)	(0.09)	(0.88)	
Emission: 0.1 - 0.5 Mt	-1.71***	0.21		
	(0.60)	(0.31)		
Emission: 0.5 - 1.0 Mt	-0.55	-0.091	-0.81	
	(0.43)	(0.29)	(0.63)	
Emission: 1.0 - 5.0 Mt	-1.57***	-0.18	1.24	
	(0.26)	(0.61)	(1.04)	
Emission: 5.0 - 10.0 Mt	-1.35***	0.10	-1.53**	
	(0.30)	(0.36)	(0.53)	
Emission: > 10 Mt	-1.28***	0.29	0.086	
	(0.24)	(0.25)	(0.54)	
EUA access	0.47	0.11		
	(0.83)	(0.21)		
Constant	-0.67***	2.59***	1.63	
	(0.26)	(0.20)	(0.81)	
Sector dummies	yes	yes	yes	
Country dummies	yes	yes	yes	
Ν	230	231	40	
Log-likelihood	-117.2	-347.8	-29.8	

Table A.14: Emission Trading Opinions among Firms: Additional Estimations

The table reports additional regression results based on the Point Carbon data at the firm level. The first model reports coefficients from a probit model (Y is binary 1 'yes' or 0 'no'), while the second and third models report coefficients from a linear model (Y is scaled from 1 'completely disagree' to 5 'completely agree'). *EUA Access* is a binary variable that capture whether a firm was allocated EUAs; however, it is omitted in the third model because the question was not asked in the 2013 survey. The reference category for the *Emissions* variable is '0' for 2007 year, while it is '0 - 0.5 Mt' for the 2013 year. Standard errors are clustered at the sector level (note that sector categories in the surveys changed slightly between 2007 and 2013). * p<.1, ** p<.05, *** p<.01.